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On the generation of surface waves by shear 
flows. Part 2 

By JOHN W. MILES 
Department of Engineering, University of California, LOB Angeles 

(Received 19 February 1969) 

A previous analysis for the generation of surface waves by a parallel shear flow 
(Miles 1957a) is extended by: (a) presenting results based on a more accurate 
solution of the differential equation; (b)  imposing the boundary condition at the 
surface wave, rather than at the mean surface; and (c) including the dominant 
viscous term in the complete Orr-Sommerfeld equation. The modification (a) 
yields an energy transfer somewhat smaller than that predicted previously but of 
the same order of magnitude as, and in rather better agreement with, observation, 
while ( b )  has no effect and (c) only a small effect for gravity waves. The analysis is 
based on the equations of motion in intrinsic co-ordinates (rather than the usual 
Om-Sommerfeld equation) and may be of interest in other problems of hydro- 
dynamic stability. 

1. Introduction 
This paper is a sequel to an earlier paper of the same title (Miles 1957a, here- 

inafter denoted by I). The principal result obtained there was that the mean rate 
at which energy is transferred from a parallel shear flow U ( y )  to a surface wave of 
wavelength 27rlk and wave-speed c is given by 

- 
j $ =  -. Pac(nU,"/kG) 3 (1.1) 

where pa denotes the density of the upper fluid (typically air), U," and UL the 
curvature and slope of the wind profile a t  the point where U = c, and? the mean- 
square value of the vertical velocity there.? 

The ultimate boundary-value problem posed in I was the solution of the inviscid 
Om-Sommerfeld equation subject to boundary conditions at infinity and at the 
mean (undisturbed) position of the surface; this boundary-value problem was not 
actually solved, however, only an integral approximation for the energy-transfer 
coefficient having been obtained. The purpose of the following analysis is to: 
(a )  present results based on an accurate integration of the differential equation 
(Miles & Conte 1959); ( b )  impose the boundary condition at the surface wave, 

t In the notation of I, E = CkcE, where E denotes the mean energy and - n6 denotes the 
logarithmic decrement. The results then were presented in terms of a coefficient B, such 
that 5 = up( U J C ) ~ ,  where u = pa/p, (air-water density ratio) and U, = U*/K for a logarithmic 
profile. Prof. Lin-has pointed out in a private communication that the energy transfer may 
be expressed as E = TC, where 7 = -pam is a Reynolds stress and ZG and v are the Cartesian 
components of velocity. Evaluating 7 according to Lin (1964) then yields (1.1). 
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rather than at the mean surface; (c)  include the dominant viscous term in the 
complete Orr-Sommerfeld equation. We shall find that: (a)  yields an energy- 
transfer coefficient that is smaller than, but of the same order of magnitude as, 
that previously estimated; ( b )  has no effect on the end-results; and (c)  shows that 
the viscous effects in the air just above the surface wave are small compared with 
those in the water (or other liquid), being of relative order crR;* R,, where 

R = c/kv,  (1.2a) 

or, for a gravity wave, R = c3/gv (1.2b)  

denotes a Reynolds number based on wave-speed, wave-number, and the vis- 
cosity of either fluid (a: air or upper fluid; w: water or lower fluid).f. 

The model to be developed in 9 2 resembles that of I in that it neglects perturba- 
tion Reynolds stresses (associated with the interaction between turbulent fluctua- 
tions in the original and perturbed flows; see I, Appendix); it  differs in that it 
includes perturbation viscous stresses and is based on the intrinsic equations of 
motion (in which the streamlines appear as co-ordinate lines).$ We shall include 
only a boundary-layer approximation to the perturbation viscous stresses, how- 
ever, anticipating that (for large R) these stresses can be significant only in the 
small neighbourhoods of the surface wave (outer viscous layer) and of U = c 
(inner viscous layer). 

It might be objected that the neglect of the perturbation Reynolds stresses 
relative to perturbation viscous stresses is far more questionable than their 
neglect in the inviscid model of I, but to this objection one may reply that the 
primary purpose of including the viscous stresses is to show that they are indeed 
negligible compared with the terms included in I. We also remark that the outer 
viscous layer, which might have been suspected to be especially important in 
virtue of the interaction of viscous stresses in air and water, is likely to be confined 
within the laminar sublayer of the undisturbed flow.§ It is expedient, in this 
connexion, to introduce the dimensionless shear parameter 

S, = V’(O+) /kc  = U : / k c ~ ,  = R,(U,/c)2, (1.3a, b, c )  

where (1.3 b)  follows from ( 1 . 3 ~ )  through the equality of the shearing stresses 
pa U2, ( U ,  = Prandtl’s friction velocity) and pava U’(0 + ), while ( 1 . 3 ~ )  follows 
from (1 .3b)  through ( 1 . 2 ~ ) .  We find that the outer viscous layer will be confined 
within the laminar sublayer if (roughly) S, < 10 and that this inequality will be 
satisfied for those combinations of parameters for which viscous dissipation in the 

7 The results of (b )  m d  (6) were anticipated in I. See also Brooke Benjamin (1959). 
$ Following the completion of the present paper, the author spent a brief period at 

Cambridge University and learned of a very similar analysis by Brooke Benjamin (1959). 
His formulation, based on orthogonal curvilinear co-ordinates, is essentially equivalent to 
that given in 8 2 below; his applications are more general, but there is very little overlap 
with the results obtained herein. 

8 There is now a considerable body of evidence (see Takahashi 1958) that the flow near 
the water is aerodynamically smooth for wind-speeds as high as 800 cm/sec (at 400 cm 
above the water). This evidence does not include direct measurements in a laminar 
sublayer, but the measured profiles do imply the existence of a laminar sublayer having 
a thickness of the order of 3-3v,/U,. 
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air might have been expected to be significant (see $5).  We emphasize, on the 
other hand, that S, may be rather large at higher wind-speeds.7 

We shall develop the equations of motion for the water in $ 3 on the assumption 
S, < 1, where [based on pa U$ = pw v, U'(0 - )] 

S, = U'(O-)/kc = CTU:/~CV,  (1.4a, b) 

This permits the neglect of the shear flow in the water and the derivation of our 
results almost directly from Lamb (1945, 9 349). 

Having developed the equations of motion in $0 2 and 3, we shall impose the 
boundary conditions of continuity of velocity and stress in $ 4  to obtain a h s t  
approximation to the complex wave-speed. We assume, as in I, that the magnitude 
of the wave-speed is closely approximated by its unperturbed, inviscid value 
(c2 = g/k for gravity waves) and that this value may be used in the determination 
of the perturbation flows. 

Numerical results based on our revised analysis are presented and discuseed in 

Concluding this introduction, we remark that the energy-transfer considered 
here augments that proposed by Phillips (1957), which considers the direct action 
of turbulent fluctuations in aerodynamic pressure on the water but neglects 
interaction between surface wave and air flow.$ We hope to consider the simul- 
taneous operation of these two complementary mechanisms in a subsequent 
paper. 

2. Equations of motion for the air 
We choose, as independent variables, the co-ordinates 5 and n measured along 

and normal to the streamlines (see figure 1) in a frame of reference moving with 
the wave-speed c and, as dependent variables, q(s,n) and B(s,n), the velocity 
along a streamline and the inclination of the streamline. (In accordance with 
the procedure outlined in $ 1, c may be approximated as real throughout the 
following analysis except in (4.5e) and (4.6).) Starting from the intrinsic 
equations of motion (Milne-Thomson 1950, $ 19.82) 

and = PaIPw (1.5) 

§ 5. 

(2 . la)  

(2.1 c) 
( 2 . l b )  

where p denotes density, p hydrodynamic pressure, v kinematic viscosity (all 
parameters in this section referring to the upper fluid), subscripts partial differen- 

t Brooke Benjamin (1959) has given an analysis for arbitrary values of S, on the assump- 
tion that U(y) is exactly linear, while Longuet-Higgins (1952) has treated a fixed wave 
(c = 0 or S, = 00) on the same assumption. Both find that the phaee shifts associated with 
the viscous stresses can lead to a positive energy-transfer to the disturbance [cf. also 
Lin (1954)J 

$ It also seem likely that the energy-transfer associated with viscous phase shifts (see 
preceding footnote) could be of considerable signjfkance for waves moving with speeds 
c corresponding to critical points (c = U )  of small profile curvature. Such waves might not 
be important for the total energy-transfer (calculated in 5 5 below), but could be important 
for the mean-square slope of the surface. 
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tiation and vq,, the dominant shear term in a boundary-layer-type approxima- 
tion, we seek the perturbation flow coupled with the displacement 

~ ( s )  = a e i k s  ( k  la\ < 1 )  (2.2) 

of the streamline n = 0 in a uniform, parallel shear flow q(O) = U(n)  - c.  (Following 
the usual convention, the imaginary parts of complex quantities proportional to 
exp (iks) are to be discarded in the final interpretation.) The final motion will be 
unstable if Y { c >  > 0, exhibiting the time-growth factor exp (kY(c )  t ) .  

Y 

FIGURE 1. The co-ordinates for the intrinsic equations of motion @.la, b, c). 

We first observe that the unperturbed solution to ( 2 . 1 4  b, c )  implied by our 

= pqn), p = p y s ) ,  e = 0. (2.3a, b, c)  

In  fact, we shall use ( 2 . l a , b , c )  to describe perturbations with respect to 
a turbulent flow for which U(n) is the mean flow and in which the viscous stress 
pvu' actually is balanced by a Reynolds stress; the model provided by (2.1~3, b,c) 
then neglects perturbation Reynolds stresses (see I, Appendix). 

We may linearize ( 2 . l a ,  b, c )  in the independent variable 8(s, n) by differen- 
tiating ( 2 . 1 ~ )  with respect to both s and n and ( 2 . l b )  twice with respect to 8,  

assumption of a strictly parallel shear flow is 

taking the difference between the results to eliminate p ,  and eliminating qs 
through (2.1 c )  whence 

(2.4) [(a"e,)n + (q2es)sls = 4Pen)nnn. 

Now, to first order in 8, we may approximate q by its undisturbed value U(n) - c 
and assume 8 to exhibit the harmonic s-dependence of (2 .2) ,  whence we obtain 

[ (u -c )2e , ln - l c2 (u-c )2e  = (v/ik) [ ( u - c )  en],,, (2.5) 

as the linearized equation of motion. We remark that (2 .5)  differs froma boundary- 
layer approximation to the Om-Sommerfeld equation (governing the perturba- 
tion stream function in Cartesian co-ordinates) in that it has a singularity at  
U = c ;  this implies that the linearized approximation to 8 cannot be uniformly 
valid in the neighbourhood of U = c . t  We shall find that this singularity intro- 
duces no essential difficulty (in so fax as we require only the perturbation stresses 
at the interface n = 0) ,  but it should be distinguished from the singularity that 
occurs at U = c for the inviscid Orr-Sommerfeld equation of ( 2 . 9 ~ )  below; the 
latter singularity is a consequence of neglecting the viscous forces in a neighbour- 
hood where the inertial forces tend to zero. 

t Brooke Benjamin's (1959) formulation in orthogonal curvilinear co-ordinates avoids 
this difficulty but leads to an inhomogeneous form of the Orr-Sommerfeld equation unless 
tern in U" and U" are neglected. 
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We shall delay consideration of the full complement of boundary conditions 

8 = f ( s )  (n = 0) and 8+0 (%-+a). (2.6a, b)  

We emphasize that these boundary conditions are imposed at the displaced, 
rather than the mean, position of the interface, thereby avoiding the assumption 
that the surface-wave displacement 7 must be small compared with a charac- 
teristic length (say c / U ‘ )  for the shear profile; thus, we have only to assume 
k 171 g 1 ,  rather than U’(O+) lrl/c [= flak 1711 < 1 .  It is for this reason that we 
choose a formulation in terms of B(s,n), the streamline inclination in non- 
Cartesian co-ordinates, rather than the more conventional formulation in terms 
of a stream function in Cartesian co-0rdinates.t 

We shall seek asymptotic solutions to (2.5) as R = c/kv -+ 00. The formal pro- 
cedure is essentially that for the Orr-Sommerfeld equation (Lin 1955, $9 3.4 and 
3.6) and yields two solutions that satisfy (2 .6b) .  The first of these, the inviscid 
solution, may be obtained by setting v = 0 in (2 .5);  the second or viscous solution 
may be obtained by neglecting the second term on the left-hand side of (2.5) or, 
equivalently, omitting the pressure gradient in ( 2 . 1 ~ )  and disregarding (2.1 b) .  
We find it convenient to solve for (U  - c )  8 and (U  - c )  8, (which are proportional 
to vertical velocity and perturbation shearing stress) in these two cases and to 

until 0 4 below, but we note here that 

separate the s-dependence by introducing the factor v f ( s ) ;  defining the dimen- 
sionless variables k- = kn, f (6)  = [ W n )  - - C l / C ,  (2.7a, b )  
we then write 

( 2 . 8 ~ )  

where f$” - (f” + f )  q!l = 0 ( 2 . 9 ~ )  

and (d2X/dE2) - iRfx = 0 or X” - ifx = 0 (2.96, c )  

as may be confirmed either by substituting ( 2 . 8 ~ )  in (2 .5)  and allowing R to tend 
to infinity or through the approximations described in the preceding sentence. 

The inviscid equation (2 .9)  is identical with the inviscid Orr-Sommerfeld 
equation considered in I, so that our introduction of intrinsic co-ordinates and 
imposition of the boundary condition ( 2 . 6 ~ )  at the displaced position of the 
interface have not altered the inviscid problem. The viscous equation (2.9b),  on 
the other hand, differs from its counterpart in the asymptotic solution of the Orr- 
Sommerfeld equation in consequence of our choice of variables. The available 

t We may compare our introduction of B ( s , n )  with the von Mises transformation 
suggested (but not used) in I to allow the imposition of the boundary conditions at the 
displaced interface. We also note that if Cartesim co-ordinates z1 and 2, are introduced 

according to z1 = 2 md z8 = y + s x  Bdz, where y denotes the vertical distance of a given 

streamline above the interface in the undisturbed flow, then partial differentiations with 
respect to s and n are equivalent to partial differentiations with respect to 2 and y. Cf. also 
Brooke Benjamin (1969). 

--co 
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methods of asymptotic solution remain the same, nevertheless, and we may use 
the WKB approximation to obtaint 

(2.10) 

where f (&) = 0 and the phase of the radical is & &r as 6 flc, the path of integra- 
tion being indented under the branch point at fl  = tC (Lin 1955, 0 3.4). 

We remark that (2.10) is not uniformly valid near 6 = flc, but that it suffices for 
our purpose in so far as X < R* (the condition that the inner and outer viscous 
layers be well separated),$ a condition that will be satisfied for those combinations 
of parameters for which viscous dissipation in the air is most significant (albeit 
still small). Formally superior solutions may be constructed (of. Lin, $53.6 and 
8.5), but they serve only to substantiate this conclusion. 

It remains to express the perturbation stresses on the interface in terms of q5 and 
x. Neglecting terms of O(R-1), in keeping with our boundary-layer approxima- 
tion, we may calculate the normal stress from (2.la, c ) ,  (2.3a, b), (2.8), and (2.9b) 
according to 

P22 = -(P-Po) (2.1 1 a) 

= - (ik)-'p[q28, + v(qnn - U")] (2.11 b) 

= - (ik1-l Pk28, - (v l ik)  (@n)n7&1 

= P C 2 W  -f$) k y .  

(2.1 1 c) 

(2.1 1 a) 

(P22)n=o+ = - WC2kT$0, (2.12) 

Evaluating (2 .114 at n = 0, where f = - 1 andf' = X [see (1.3)], we write 

where .m = ($h/$O) +# = (a +in (i?l/c)2; (2.13a, b) 

the parameters a and /3 are defined as in I (where g50 = l), and the subscript zero 
implies evaluation at 6 = 0 + . 

The tangential stress is given by (within the boundary-layer approximation) 

( 2 . 1 4 ~ )  

= - (ik)-'pv(@,), (2.14 b) 

= pc2R-*x'(R*6) ky .  ( 2 . 1 4 ~ )  

Pl2 = PV(% - U')  

Substituting x from (2.10) and setting 6 = 0 + , we obtain 

(p12)7&=o+ = - e-iinpc2 ky R-*xo. (2.15) 

We remark that the viscous solution enters the calculation of the normal stress 
and the inviscid solution that of the tangential stress only through the boundary 
conditions, which relate $o and xo. 

3. Equations of motion for the water 
We shall proceed oh the assumption that the shear flow in the water (induced by 

the traction of the shear flow in the air) may be neglected. As stated in 5 1, this 
will be a good approximation if Sw$ 1, where 6, is defined by (1.4). (This has 

t The error factor in (2.10) is referred to the exact solution of (2.5), not (2.98). 
I: The parameter R* 8-l is similar to the parameter ZP (Lin 1955, 8 3.5) in the plane 

Poiseuille stability problem. 
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been confirmed by an analysis similar to that of the preceding section.) We 
emphasize that this assumption does not preclude the existence of a surface 
current, since our velocities are defined relative to such a current; all that S, << 1 
does imply is that the water moves approximately uniformly with the surface 
current to a depth of the order of l/k ( = h / 2 n ) .  We add that the small shear flow 
that is present must be oppositely directed to the airflow-i.e. U, < 0 if U, > 0 ;  it 
follows that U - c could not vanish in n < 0 for a wave travelling downwind, 
whence the shear flow in the water could not transfer energy to the surface wave 
through the mechanism of I.? 

Assuming small perturbations with respect to a uniform flow - c (in our moving 
frame of reference), we may take over Lamb's (1945, 9 349) solution for a surface 
wave of the form (2 .2 )  moving over a viscous liquid. Converting Lamb's notation 
to that introduced in 0 2 above (in particular v = - c8; also, we omit the hydro- 
static pressure fromp2& we may pose the streamline inclination and perturbation 
stresses in the forms 

8 = (aec+beKt ) iky ,  (3.1) 

(3.2) 

(3.3) 

K = (1 - iR)J,  g { ~ }  > 0, (3.4a, b)  

where a and b are constants to be determined ( A  = iac and C = - bc are the 
corresponding constants in Lamb's solution) by the boundary conditions at the 
interface, andp, v, and R are to be evaluated for the water. We emphasize that the 
boundary-layer approximation is not applicable to the water (since the interface 
is approximately free for the heavy fluid below the interface) and that (3.1)-(3.4) 
are based on the full, linearized equations of viscous flow; subsequently, we shall 
assume R, to be large, but this approximation has yet to be invoked. 

p,, = - pc2[( 1 + 2iR-l)  a ee + 2 i ~ R - l  b eKc] ky ,  

p , ,  = pc2[2R-la et + ( 2R-1 - i) b e.51 ky, 

4. Determination of wave-speed 
We may infer the boundary conditions at the interface from the considerations 

that both 8, and 8, must be equal to the slope of the surface wave, that the 
velocity (or 8,) be continuous, that the shear stress be continuous, and that the 
discontinuity in normal stress be prescribed-viz. 

8, = iky, 0, = i ky ,  A8, = 0, (4.la, b, c) 

4 2  = 0, Ap2z = Ly, (4.1 d,  e )  

where A denotes a jump operator according to 

A( 1 = ( L o + - (  )n=o- (4 .2)  

and L y  the (static) restoring stress of the interface. We may relate the operator L 
to the inviscid wave-speed in the absence of the upper fluid according to (see I) 

Ly = p w c % l ;  (4.3) 

t Such an energy transfer would be predicted for a wave travelling upwind, but it 
generally would be muoh smaller than the energy absorbed by viscous dissipation, primarily 
because 'U: almost certainly would be very small a t  that depth where U, - c = 0. 
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for gravity waves, we have simply 
C: = g/k. (4-4) 

We need not pose the boundary conditions at  infinity, assuming them to be 
satisfied implicitly. 

Substituting (2.8c), (2.12), (2.15), (3.1)-(3.3), and (4.3) in (4.la-e), setting 
f(0) = - 1 and f '(0) = AS',, and cancelling common factors, we may place the 

(4.5a) 
results in the form 

#o - eain R;*xo = 1,  

a + b  = 1, (4.5b) 

#;+f l ,#O+xo = a + K b ,  (4.5c) 

( 4 . 5 4  - e-iin uR;*x, = 2R;l(a + b) - ib,  

c; = c2[( 1 + 2iR;') a + 2i~R;'b - uw#,]. (4.5e) 

Solving (4.5a-d) for #,, xo, a, and b, and substituting the results in (4.5e), we 
obtain 

c2 = ~ ~ { l - 4 i R ~ ~ + u w - u ( 1  -w)2eainR;*+O[R;#, uR;*R;*, uS,R;l, cr2]}. 

Substituting w from (2.13b) and R, and R,from (1 .2b)  in (4.6) and neglecting 
(4.6) 

higher-order terms, we obtain the damping ratio (see first footnote in 9 1 above) 

(4.7) 

where the three terms on the right-hand side represent the positive energy- 
transfer from the shear flow, the viscous dissipation in the water, and the viscous 
dissipation in the air. Approximating the bracketed terms by 1 (they will be only 
slightly in excess of 1 for typical c/Ul), we find that the viscous dissipation in the 
air will be less than 10 % of that in the water for c c 52 cm/sec ( A  = 17 cm) and 
will exceed it only for c > 240 cm/sec ( A  = 360 cm). We also observe that neither 
of the dissipation terms is numerically significant for c > 100 cm/sec ( A  > 64 cm) 
and wind speeds sufficiently high (U, N 10 cmlsec) to permit the achievement of 
near-maximum values of /?. 

5. Numerical results 
It remains to determine the parameter w, as defined by (2.13a, 6 ) .  This requires 

the determination of the ratio &/$, through the integration of ( 2 . 9 ~ )  subject to 
(2.6b)-or, better, 4' + 4 + 0, 5 -+ 00. Only an integral approximation to the 
parameter /3 was attempted in I, but ( 2 . 9 ~ )  has since been integrated numerically 
(Conte & Miles 1959) for the logarithmic profile (I, equation (5.3b)) 

U(n) = U1log (n/zo), Ul = U*/K, (5.la, b) 

with K = 0.4. The results for a! and /3, defined as in I and (2.13 b)  above, are plotted 
ws 5, and c/Ul in figures 2 to 6 for three values of the parameter s1, where (I, 
equation (6.2)) 5, = a( Ul/c)2 eC/Ui, = gz,/ U;, (5.2a, b) 
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with c2 = g /k  (in zero’th approximation). Figure 6 has been included to illustrate 
the phase shift between the perturbation pressures outside the critical layer and 
at the surface wave. We add that the independent variable actually used in the 
integration was f, rather than 5, and the logarithmic profile was assumed to be 

5, 
FIUURE 2. ws 6,. 

1 
E C  

FIGURE 3. B exp (26,) vs .&. 

valid down tof = - 1 (where [ = kx,). The correction required for the departure 
of the actual profile from the logarithmic profile in (say) 6 < is found in 
Appendix A to be O(&) and therefore negligible for the range of the numerical 
integration. 
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Comparing the results of figures 2 and 3 with those of I (figure l), we find that, 
as previously concluded, /3 us tc is essentially independent of Q for tc < 2 and is 
O(e-2cc) as 5, -+ co; on the other hand, the numerical values of p are generally 
smaller than those estimated in I. We also find that a vs tc is independent of Q for 

sufficiently small tc, since a then may be expressed in terms of /3 (see Appendix B). 
Assuming aerodynamically smooth flow (z,, = v,/9U,), we find that the critical 
wind-speed at which the energy-transfer from the shear flow is just balanced by 
laminar dissipation in the water [see I, equations (6.5) to (6.7)] is given by 

37 Fluid Mech. 6 



578 John Jf? Miles 

U, = 1&15cm/secforwavesof length20-30cm. Theavailabilityofenergyfromthe 
direct action of the turbulent fluctuations of the wind (as described by Phillips)? 
renders this critical wind-speed of only secondary significance, however, and 
there is now little reason to compare it directly with the minimum wind-speed 
( U, = 9-10 cm) at which water waves are first observed. 

ClVl 

FIUURE 6. The phaae shift tan-' (/3/ -a) v8 c/U,. 

We conclude by calculating mean values of p, say pE and pT, on the basis of 
mean energy-transfer and mean Reynolds stress. The rate at which energy is 
transferred from the shear flow to surface waves by normal pressures is given by 

(5.34 

(5.3b) 

where 0 now denotes the angle between the wind and the direction of propagation 
of a given wave, B0 the total beam width of the wave spectrum, and S the power 
spectral density of the surface displacement; we have substituted p,, from (2.12) 
with #o = 1 (corresponding to the neglect of the viscous solution), assumed that 
the effective wind-speed for an obliquely moving wave is reduced by cos 8, and 
posed p as a function of the ratio of wave-speed to effective wind-speed.$ It 
follows from (5.3 c )  that we may define BE, the mean value of /? for energy transfer, 
according to 

(5.4) /omj:e~[/!?(&) -/?El k2S(k,0)cos20kdkd0 = 0. 

We shall assume the Neumann spectrum (I, equation (8.4)) 

k2Sk dk d0 = C e-2(c/uJa dc d0, (5.5) 

t And perhaps also from the viscous phase shifts predicted by Longuet-Higgins and 

$ More precisely, p = /?(c/U, COB 8, n), where fi = gzofV: cm8 5. The subsequent calcula- 
Brooke Benjamin (see laat two footnotes in 8 1 above). 

tions neglect the dependence of !2 on cos 8. 
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where C is a constant [irrelevant for (5.4)] and U, the wind speed at the anemo- 
meter height. If we also introduce the change of variable x = c/Ul cos 8, we may 
place the result for in the form 

where (5.7) 

We s h d  consider the two extremes 8, = 0 and m, for which (5.7) yields 

fE(!/ ,  O) = e-2y ( 5 . 8 ~ )  

and f E ( Y ,  n) = e-Y[lo(Y) - (1 + 3y-l) 4(Y)lY (5.8b) 

where (5.8b) follows from (5.7) through the integral representation of I,, the 
modified Bessel function of the first kind. 

The mean Reynolds stress (cf. first footnote in $1)  in the direction of the wind is 

(5.9) 
given by 

7 = a{ -pz2(iky)* cos 8). 

Following the development of (5.3) and (5.4), we then may define /3,, the mean 
value of /3 for Reynolds stress, according to 

lom [/3( &) - k2S(k, 8) cos3 8 k dk d8 = 0. (5.10) 

Introducing AS from ( 5 4 ,  we obtaint 

(5.11) 

where f , (y ,  8,) = $[sin(8,/2)-+~in~(8,/2)]-~ (8,+sinB,) fE(y ,8 , ) .  (5.12) 

Numerical integrations of (5.6) and (5.1 1) have been carried out for a = 10-2, 
which is representative of fully developed rough flow [see I ,  equation (7.5a, b ) ] ,  
and U,/Ul = 9, which is appropriate for wind-speeds of the order of 10m/aec at 
10 m above the surface.$ It also was assumed that P(x)  = 0 for x < 3, where the 
logarithmic profile presumably ceases to hold.§ The resulting values of are 
1.24 and 1.05 for B0 = 0 and n; the values of /3, are 0.90 and 0.75. The corresponding 

Comparing (5.9) and (5.11) x (Ul/Ua)* with I(8.1)  and (8.7), we note that the latter 
results are not entirely consistent in their treatment of COB 8-factors [see also Munk (1955) 
on this point] ; accordingly, /3, = ( U,,/Ul)a bM only for 8, = 0, but the discrepancies are 
relatively unimportant compared with other uncertainties in the numerical calculations. 

The wind-speed of 10 m/sec at 10 m is representative (in order of magnitude) of wind- 
speeds for which the Neumann spectrum was measured; for a wind-speed of 3 m/sec a t  
10 m Ua/Ul = 12 would be closer to the mark. 

8 A rough correction factor for the fall-off of profile curvature aa a laminar sublayer is 
approached waa constructed on the basis of the approximation 8- ( U ~ / U ~ )  end m inter- 
polated profile (linear at boundary and aaymptotically logarithmic, Miles 19576). This 
factor was found to be 0.99, 0.86, and 0.19 for c/Ul = 4.8, 3.6,' and 2.9, respectively, 
indicating a rather sharp cut-off of /3 aa the critical layer approaches the laminar sublayer. 
It is by no means certain that the flow close to the wface  is aerodynamically smooth, but 
Takahaehi's measurements (1958) tend to support such an assumption. 
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values referred to Ua-viz. (Ul/Ua)2/3E and (Ul/Uu)2p7-are 1.5 x 
1.1 x and 0.9 x The latter values are in order-of-magnitude agreement 
with the 'sheltering coefficient' of 1.3 x estimated by Sverdrup & Munk 
(1947) from their data on wave-growth and with the incremental shearing stress 
inferred by Munk (1955) from measurements made by Van Dorn. We emphasize 
that any of these numbers might be modified by a factor as large as (but probably 
no larger than) two either by changes in the assumed values of Vu/Ul, s2 and the 
cut-off point for P(z) or by changes in the treatment of the observational data. 

1.3 x 

The results of the preceding paragraph are summarized in table 1. 

U(y) = u, log (y/zo) = Ul log (100 gy/u:) ,  u,+ QUl 
00 PE P, 
0 1.24 (1-5 x 0-QO(1.1 x 10-2) 
n 1.05 (1.3 x 10") 0.75 (0.9 x 

Sverdrup & Munk: (Ul/U,)2 PE= 1.3 x lo-* 
Munk/Van Dorn: (Ul/Ua)z PT= 0-6- 1.8 x 

TABLE 1. Comparison with Observation. 

6. Conclusions 
We conclude that our model for energy-transfer from a parallel shear flow to 

deep-water gravity waves yields a total energy-transfer in order-of-magnitude 
agreement with observation. This suggests that such a mechanism may be 
a decisively important adjunct to initial excitations from other sources-in 
particular, turbulent fluctuations of wind pressure, as in the model proposed by 
Phillips (1957). 

I am indebted to C. S. Cox, W. H. Munk and W. H. Van Dorn of the Scripps 
Institute of Oceanography for frequent discussions on the general subject of 
wave-generation, to M. S. Longuet-Higgins for making available to me his 
unpublished work, and to T. Brooke Benjamin for making available to me the 
page proof of his paper and for reading the manuscript of the present paper and 
offering several valuable suggestions for its improvement. I also take pleasure 
in acknowledging support, in the form of a fellowship, from the John Simon 
Guggenheim Memorial Foundation. 

Appendix A 
Suppose that the profilef,([) agrees with the true profilef(6) for 5 > El but not 

for 6 -= El and that a value of a, say a,, has been calculated by approximating 
f byf, in c < cl; then, givenf([),fr(E) and wl we require the true value of w on the 
assumption that t1 is small. 

= &; then we may 
integrate ( 2 . 9 ~ )  inward from 5, to obtain the approximate solution (cf. Lin 1955, 

Let #1 and 9; denote the true values of #([) and # ' (E )  at 

3 3.4) 
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with an error factor 1 +O(t : ) .  Substituting ( A l )  in (2.13a), we may place the 

1 1  result for w in the form 

where 

Similarly, 

where 5, denotes the lower limit actually used in the calculation based on fz. 

b) 
Assuming fdt) = (U,/c)log (t/5,), fZ(t0) = - 1, 

introducing the logarithm as the variable of integration in (A4), and eliminating 
ml between (A 2) and (A a), we obtain 

The first integral may be reduced to the tabulated exponential integral; assuming 
t1 < tC (as must be so if the logarithmic profile is valid through the critical layer) 
and thatf decreases monotonically from 0 at 5 = tc to - 1 at 5 = 0, we then find 
that both integrals are O&). Choosing the lower limit of validity for the 
logarithmic profile as 30z0, we have 

El = 30k0 = 30fZ(u1/C)a, (A 7) 

which renders the difference between a and wl negligible for the range of para- 
meters covered in figures 2-6. 

Appendix B 
We seek to express a in terms of P for small tC. Rewriting ( 2 . 9 ~ )  according to 

(W-f '4)' = ff4 (B 1) 

integrating both sides between 5 = 0 and 5 = t,, setting f (0) = - 1 and f '(0) = X, 
and evaluating w from (2.13), we obtain 

(a+iP) (u,/c)2 = f l . ( 4 c M o )  +#+4d5 ( B 2 4  

= f l . ( 4 C M O )  [ I +  O(t31. ( B  2b) 

(B 3) 

(B 4) 

Taking the absolute value of both sides of (B 2 b) yields 

a2+PZ = (c/~l)zfl .2 l 4 c / 4 0 l 2 ;  

IB = -w~l)z (fc"/fl.) l $ C / 4 0 l Z ~  

a = - [(P/&) -P21*- 

eliminating Iq5c/q5012 through [I (4.3)] 

assuming a < 0 [as may be proved from I, equation (4.1)], and evaluating fl. and 
f; for the logarithmic profile of (A 5a), we obtain 

(B 5 )  

We have used this result to obtain an independent check on the numerical 
integration for small tc. 
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C O R R I G E N D A  FOR 1 (MILES 1957~) 

(1) Equations ( 3 . 2 ~ )  b) should read: ZG = - $v) v = $z. 
(2) Footnote, p. 193: replace w,"wb by w,"/w& 
(3) Caption, figure 4: replace gus by Q/s. 
(4) Equation (A 5 b )  : replace )$ by Z:). 




